CUMMINS ENGINE COMPANY, INC Columbus, Indiana 47201 #### **ENGINE PERFORMANCE CURVE** Basic Engine Model: QST30-G1 Curve Number: FR-5184 G-DRIVE Q30 Engine Critical Parts List: CPL: 2839 Date: **29Mar01** 1 Displacement : **30.48** litre (**1860** in³) Bore : **140** mm (**5.51** in.) Stroke : **165** mm (**6.50** in.) No. of Cylinders: 12 Aspiration: Turbocharged and Aftercooled | Engine Speed | Standby Power | | Prime Power | | Continuous Power | | |--------------|---------------|------|-------------|------|------------------|-----| | RPM | kWm | ВНР | kWm | ВНР | kWm | ВНР | | 1500 | 701 | 940 | 634 | 850 | 485 | 650 | | 1800 | 847 | 1135 | 768 | 1030 | 627 | 840 | ### Engine Performance Data @ 1500 RPM | OUTPUT POWER | | | FUEL CONSUMPTION | | | | |------------------|---------------|-----|------------------|--------------|----------------|-------------------| | % | kWm | ВНР | kg/
kWm∙h | lb/
BHP∙h | litre/
hour | U.S. Gal/
hour | | STAN | STANDBY POWER | | | | | | | 100 | 701 | 940 | 0.197 | 0.324 | 162 | 42.9 | | PRIME | PRIME POWER | | | | | | | 100 | 634 | 850 | 0.199 | 0.326 | 148 | 39.0 | | 75 | 476 | 638 | 0.199 | 0.327 | 111 | 29.4 | | 50 | 317 | 425 | 0.207 | 0.340 | 77 | 20.4 | | 25 | 158 | 212 | 0.232 | 0.381 | 43 | 11.4 | | CONTINUOUS POWER | | | | | | | | 100 | 485 | 650 | 0.199 | 0.327 | 113 | 29.9 | ## **Engine Performance Data @ 1800 RPM** | OUTPUT POWER | | | FUEL CONSUMPTION | | | | | |------------------|---------------|------|------------------|--------------|----------------|-------------------|--| | % | kWm | ВНР | kg/
kWm∙h | lb/
BHP∙h | litre/
hour | U.S. Gal/
hour | | | STAN | STANDBY POWER | | | | | | | | 100 | 847 | 1135 | 0.208 | 0.342 | 207 | 54.7 | | | PRIME POWER | | | | | | | | | 100 | 768 | 1030 | 0.205 | 0.338 | 186 | 49.0 | | | 75 | 576 | 772 | 0.203 | 0.334 | 137 | 36.3 | | | 50 | 384 | 515 | 0.217 | 0.357 | 98 | 25.9 | | | 25 | 192 | 258 | 0.246 | 0.405 | 56 | 14.7 | | | CONTINUOUS POWER | | | | | | | | | 100 | 627 | 840 | 0.202 | 0.333 | 149 | 39.4 | | **CONVERSIONS:** (Litres = U.S. Gal x 3.785) $(kWm = BHP \times 0.746)$ $(U.S. Gal = Litres \times 0.2642)$ $(BHP = kWm \times 1.34)$ Data shown above represent gross engine performance capabilities obtained and corrected in accordance with ISO-3046 conditions of 100 kPa (29.53 in Hg) barometric pressure [110 m (361 ft) altitude], 25 °C (77 °F) air inlet temperature, and relative humidity of 30% with No. 2 diesel or a fuel corresponding to ASTM D2. See reverse side for application rating guidelines. The fuel consumption data is based on No. 2 diesel fuel weight at 0.85 kg/litre (7.1 lbs/U.S. gal). **TECHNICAL DATA DEPT.** **CERTIFIED WITHIN 5%** **CHIEF ENGINEER** # POWER RATING APPLICATION GUIDELINES FOR GENERATOR DRIVE ENGINES These guidelines have been formulated to ensure proper application of generator drive engines in A.C. generator set installations. Generator drive engines are not designed for and shall not be used in variable speed D.C. generator set applications. STANDBY POWER RATING is applicable for supplying emergency power for the duration of the utility power outage. No overload capability is available for this rating. Under no condition is an engine allowed to operate in parallel with the public utility at the Standby Power rating. This rating should be applied where reliable utility power is available. A standby rated engine should be sized for a maximum of an 80% average load factor and 200 hours of operation per year. This includes less than 25 hours per year at the Standby Power rating. Standby ratings should never be applied except in true emergency power outages. Negotiated power outages contracted with a utility company are not considered an emergency. CONTINUOUS POWER RATING is applicable for supplying utility power at a constant 100% load for an unlimited number of hours per year. No overload capability is available for this rating. PRIME POWER RATING is applicable for supplying electric power in lieu of commercially purchased power. Prime Power applications must be in the form of one of the following two categories: #### **UNLIMITED TIME RUNNING PRIME POWER** Prime Power is available for an unlimited number of hours per year in a variable load application. Variable load should not exceed a 70% average of the Prime Power rating during any operating period of 250 hours The total operating time at 100% Prime Power shall not exceed 500 hours per year. A 10% overload capability is available for a period of 1 hour within a 12 hour period of operation. Total operating time at the 10% overload power shall not exceed 25 hours per year. #### **LIMITED TIME RUNNING PRIME POWER** Prime Power is available for a limited number of hours in a non-variable load application. It is intended for use in situations where power outages are contracted, such as in utility power curtailment. Engines may be operated in parallel to the public utility up to 750 hours per year at power levels never to exceed the Prime Power rating. The customer should be aware, however, that the life of any engine will be reduced by this constant high load operation. Any operation exceeding 750 hours per year at the Prime Power rating should use the Continuous Power rating. #### Reference Standards: BS-5514 and DIN-6271 standards are based on ISO-3046. #### **Operation At Elevated Temperature And Altitude:** The engine may be operated at: 1800 RPM up to 1524 m (5000 ft) and 35 °C (95 °F) without power deration. 1500 RPM up to 1524 m (5000 ft) and 35 °C (95 °F) without power deration. #### Note: For altitudes less than 305 m (1000 ft), the engine may be operated at 1500 RPM and 1800 RPM up to 52 $^{\rm o}$ C (125 $^{\rm o}$ F) without power deration. For sustained operation above these conditions, derate by 4% per 300 m (1000 ft), and 2% per 11° C (1% per 10° F). # Cummins Engine Company, Inc. Engine Data Sheet G-DRIVE Q30 3 **DATA SHEET**: DS-5184 ENGINE MODEL: QST30-G1 DATE: 29Mar01 PERFORMANCE CURVE: FR-5184 **CONFIGURATION NUMBER:** D573001GX03 **INSTALLATION DIAGRAM** **CPL NUMBER** • Fan to Flywheel : 3626434 • Heat Exchanger Cooled : N.A. • Engine Critical Parts List : 2839 | Type | | | ee; 12-Cylinder D | |---|-------------------------|----------------|-------------------| | Aspiration | | | and Aftercooled | | Bore x Stroke | | 140 x165 (5.51 | x 6.50) | | Displacement | | 30.48 (1860) | | | Compression Ratio | | 14.0 : 1 | | | Dry Weight | 1 (11) | 2027 | (05.40) | | Fan to Flywheel Engine | — kg (lb) | 2967 | (6540) | | Wet Weight | | | | | Fan to Flywheel Engine | — kg (lb) | 3062 | (6750) | | Moment of Inertia of Rotating Components | | | | | with FW 5050 Flywheel − kg • m² (| $(lb_m \bullet ft^2)$ | 8.7 | (206) | | Center of Gravity from Rear Face of Flywheel Housing (FH 5031) | | 845 | (33.3) | | Center of Gravity Above Crankshaft Centerline | | 195 | (7.7) | | Maximum Static Loading at Rear Main Bearing | | 950 | (2100) | | ENGINE MOUNTING | | | | | Maximum Bending Moment at Rear Face of Block | • m (lb • ft) | 3100 | (2286) | | EXHAUST SYSTEM | | | | | Maximum Back Pressure — mm H | Ha (in Ha) | 76 | (3.0) | | - IIIII I | rig (iirrig) | 70 | (3.0) | | AIR INDUCTION SYSTEM | | | | | Maximum Intake Air Restriction | | | . | | • with Dirty Filter Element — mm H ₂ C | | 635 | (25) | | • with Normal Duty Air Cleaner and Clean Filter Element — mm H ₂ C | | 254 | (10) | | • with Heavy Duty Air Cleaner and Clean Filter Element | O (in H ₂ O) | 381 | (15) | | COOLING SYSTEM | | | | | Coolant Capacity — Engine Only— lite | er (US gal) | 85 | (22.4) | | Maximum Coolant Friction Head External to Engine — 1800 rpm — | - kPa (psi) | 69.0 | (10.0) | | — 1500 rpm — | - kPa (psi) | 48.0 | (7.0) | | Maximum Static Head of Coolant Above Engine Crank Centerline | — m (ft) | 14 | (46) | | Standard Thermostat (Modulating) Range | | 82 - 95 | (180 - 203) | | Minimum Pressure Cap — | | 69.0 | (10) | | Maximum Top Tank Temperature for Standby / Prime Power | | 104 / 100 | (220 / 212) | | LUBRICATION SYSTEM | | | | | Oil Pressure @ Idle Speed— | - kPa (psi) | 166 | (24.0) | | @ Governed Speed — | \(\(\dot{\pi}\) | 310 - 386 | (45.0 - 56.0) | | Maximum Oil Temperature | \(\(\frac{1}{2}\) | 121 | (250) | | Oil Capacity with OP 5133 Oil Pan : High - Low | , , | 133 - 114 | (35 - 30) | | Total System Capacity (Including Bypass Filter) | | 154 | (40.7) | | | | 134 | (40.7)
17° | | Angularity of OP 5133 Oil Pan — Front Down | | | | | Angularity of OP 5133 Oil Pan — Front Down | | | 35° | #### **FUEL SYSTEM** | I OLL STOTLIN | | | |---|---|------------------| | Type Injection System | Bosch P7100 I | Direct Injection | | Maximum Restriction at Lift Pump — with Clean Fuel Filter — mm Hg (in Hg) | 102 | (4) | | — with Dirty Fuel Filter — mm Hg (in Hg) | 203 | (8) | | Maximum Allowable Head on Injector Return Line (Consisting of Friction Head and Static Head) | 508 | (20) | | Maximum Fuel Flow to Injection Pumps (LB and RB combined) — 1800 RPM — liter / hr (US gph) | 375 | (99) | | — 1500 RPM — liter / hr (US gph) | 356 | (94) | | Maximum Drain Flow (@ Minimum load) — 1800 RPM— liter / hr (US gph) | 356 | (94) | | — 1500 RPM— liter / hr (US gph) | 341 | (90) | | Maximum Fuel Inlet Temperature | 66 | (150) | | ELECTRICAL SYSTEM Cranking Motor (Heavy Duty, Positive Engagement) | 24
35
0.002
1200
1280
1800 | | | Minimum Ambient Temperature for Aided (with Coolant Heater) Cold Start within 10 seconds to Rated Speed — °C (°F) | 10 | (50) | | Minimum Ambient Temperature for Aided (with Grid Heater) Cold Start | -10 | (14) | | Minimum Ambient Temperature for Unaided Cold Start | 0 | (32) | #### PERFORMANCE DATA All data is based on: - Engine operating with fuel system, water pump, lubricating oil pump, air cleaner and exhaust silencer; not included are battery charging alternator, fan, and optional driven components. - Engine operating with fuel corresponding to grade No. 2-D per ASTM D975. - ISO 3046, Part 1, Standard Reference Conditions of: Barometric Pressure : 99 kPa (29.3 in Hg) Air Temperature : $25\,^{\circ}\text{C}$ (77 $^{\circ}\text{F}$) Altitude : 110 m (361 ft) Relative Humidity : 30% | Governed Engine Speed — rpm | |---| | Engine Idle Speed — rpm | | Gross Engine Power Output — kW _m (BHP) | | Brake Mean Effective Pressure HPa (psi) | | Piston Speed | | Friction Horsepower | | Engine Water Flow at Stated Friction Head External to Engine: | | • 5 psi Friction Head — liter / s (US gpm) | | Maximum Friction Head—liter / s (US gpm) | | | | Engine Data with Dry Type Exhaust Manifold | | | | | |--|-------------------------------|--|--|--| | Intake Air Flow | liter / s (cfm) | | | | | Exhaust Gas Temperature | — °C (°F) | | | | | Exhaust Gas Flow | liter / s (cfm) | | | | | Air to Fuel Ratio | — air : fuel | | | | | Radiated Heat to Ambient | — kW _m (BTU / min) | | | | | Heat Rejection to Coolant | — kW _m (BTU / min) | | | | | Heat Rejection to Exhaust | — kW _m (BTU / min) | | | | | | | | | | | STA | NDBY | PRIME POWER | | | | |-------------|-------------|-------------|-------------|--|--| | 60 hz | 50 hz | 60 hz 50 hz | | | | | 1800 | 1500 | 1800 | 1500 | | | | 700 - 900 | 700 - 900 | 700 - 900 | 700 - 900 | | | | 847 (1135) | 701 (940) | 768 (1030) | 634 (850) | | | | 1855 (269) | 1841 (267) | 1682 (244) | 1662 (241) | | | | 9.9 (1949) | 8.3 (1634) | 9.9 (1949) | 8.3 (1634) | | | | 82 (110) | 58 (78) | 82 (110) | 58 (78) | | | | 15.5 (246) | 12.5 (198) | 15.5 (246) | 12.5 (198) | | | | 15.0 (238) | 12.0 (190) | 15.0 (238) | 12.0 (190) | | | | 1098 (2325) | 760 (1610) | 1022 (2165) | 708 (1500) | | | | 480 (895) | 538 (1000) | 455 (850) | 527 (980) | | | | 2908 (6160) | 2170 (4596) | 2620 (5546) | 1995 (4225) | | | | 26.3:1 | 22.3 : 1 | 27.1:1 | 22.6 : 1 | | | | 126 (7155) | 102 (5795) | 112 (6395) | 93 (5290) | | | | 490 (27860) | 377 (21430) | 431 (24525) | 326 (18570) | | | | 634 (36060) | 518 (29477) | 562 (31950) | 496 (28215) | | | N.A. - Data is Not AvailableN/A - Not Applicable to this Engine TBD - To Be Determined ENGINE MODEL: QST30-G1 DATA SHEET: DS-5184 DATE: 29Mar01 CURVE NO.: FR-5184